Anomaly Detection Using XGBoost Ensemble of Deep Neural Network Models

Author:

Ikram Sumaiya Thaseen1,Cherukuri Aswani Kumar1,Poorva Babu1,Ushasree Pamidi Sai1,Zhang Yishuo2,Liu Xiao2,Li Gang2

Affiliation:

1. School of Information Technology and Engineering, Vellore Institute of Technology , Vellore , Tamil Nadu , India

2. School of Information Technology , Deakin University , Australia

Abstract

Abstract Intrusion Detection Systems (IDSs) utilise deep learning techniques to identify intrusions with maximum accuracy and reduce false alarm rates. The feature extraction is also automated in these techniques. In this paper, an ensemble of different Deep Neural Network (DNN) models like MultiLayer Perceptron (MLP), BackPropagation Network (BPN) and Long Short Term Memory (LSTM) are stacked to build a robust anomaly detection model. The performance of the ensemble model is analysed on different datasets, namely UNSW-NB15 and a campus generated dataset named VIT_SPARC20. Other types of traffic, namely unencrypted normal traffic, normal encrypted traffic, encrypted and unencrypted malicious traffic, are captured in the VIT_SPARC20 dataset. Encrypted normal and malicious traffic of VIT_SPARC20 is categorised by the deep learning models without decrypting its contents, thus preserving the confidentiality and integrity of the data transmitted. XGBoost integrates the results of each deep learning model to achieve higher accuracy. From experimental analysis, it is inferred that UNSW_ NB results in a maximal accuracy of 99.5%. The performance of VIT_SPARC20 in terms of accuracy, precision and recall are 99.4%. 98% and 97%, respectively.

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3