A Robust Feature Construction for Fish Classification Using Grey Wolf Optimizer

Author:

Santosa Paulus Insap1,Pramunendar Ricardus Anggi2

Affiliation:

1. Department of Electrical Engineering and Information Technology, Faculty of Engineering , Universitas Gadjah Mada , Yogyakarta , , Indonesia

2. Department of Informatics Engineering, Faculty of Computer Science , Universitas Dian Nuswantoro , Semarang , Indonesia

Abstract

Abstract The low quality of the collected fish image data directly from its habitat affects its feature qualities. Previous studies tended to be more concerned with finding the best method rather than the feature quality. This article proposes a new fish classification workflow using a combination of Contrast-Adaptive Color Correction (NCACC) image enhancement and optimization-based feature construction called Grey Wolf Optimizer (GWO). This approach improves the image feature extraction results to obtain new and more meaningful features. This article compares the GWO-based and other optimization method-based fish classification on the newly generated features. The comparison results show that GWO-based classification had 0.22% lower accuracy than GA-based but 1.13 % higher than PSO. Based on ANOVA tests, the accuracy of GA and GWO were statistically indifferent, and GWO and PSO were statistically different. On the other hand, GWO-based performed 0.61 times faster than GA-based classification and 1.36 minutes faster than the other.

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3