Exploring the Performance and Characteristics of Single Linkage and Complete Linkage Hierarchical Clustering Methods for IoT Sensor Networks

Author:

Bajaber Fuad1

Affiliation:

1. 1 Department of Information Technology, Faculty of Computing and Information Technology , King Abdulaziz University , Jeddah , Saudi Arabia

Abstract

Abstract The research explores applying hierarchical clustering methods, namely single linkage and complete linkage, in IoT Sensor Networks (ISNs). ISNs are distributed systems comprising numerous sensor nodes that collect data from the environment and communicate with each other to transmit the data to a base station. Hierarchical clustering is a technique that groups nodes into clusters based on proximity and similarity. This paper implements and compares the performance of single linkage and complete linkage methods in terms of cluster size, network lifetime, and cluster quality. The study’s findings provide guidance for ISN researchers and designers in selecting the appropriate clustering method that meets their specific requirements.

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

Reference30 articles.

1. Bilal, J., H. Farman, H. Javed, B. Montrucchio, M. Khan, S. Ali. Energy Efficient Hierarchical Clustering Approaches in Wireless Sensor Networks: A Survey. – Wireless Communications and Mobile Computing, 2017, pp. 1-14. https://doi.org/10.1155/2017/6457942

2. Gopika, D., R. Panjanathan. Energy Efficient Routing Protocols for WSN Based IoT Applications: A Review. – Materials Today Proceedings, November 2020. https://doi.org/10.1016/j.matpr.2020.10.137

3. De-gan, Z., J. Qiu, T. Zhang, H. W u. New Energy-Efficient Hierarchical Clustering Approach Based on Neighbor Rotation for Edge Computing of IOT. – In: Proc. of 28th International Conference on Computer Communication and Networks (ICCCN’19), IEEE, 2019, pp. 1-2.

4. Gazi, R. M. E., K. Wahid. LDCA: Lightweight Dynamic Clustering Algorithm for IoT-Connected Wide-Area WSN and Mobile Data Sink Using LoRa. – IEEE Internet of Things Journal, Vol. 9, 2021, No 2, pp. 1313-1325.

5. Mohammad, M., Y. Jaradat, D. Zaidan, I. Jannoud. To Cluster or Not to Cluster: A Hybrid Clustering Protocol for WSN. – In: Proc. of IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT’19), IEEE, 2019, pp. 678-682.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3