Design of Multi-Epitope Vaccine against SARS-CoV-2

Author:

Doytchinova Irini1,Tchorbanov Andrey2

Affiliation:

1. Faculty of Pharmacy , Medical University of Sofia , 1000 Sofia , Bulgaria

2. Institute of Microbiology, Bulgarian Academy of Sciences , 1115 Sofia , Bulgaria

Abstract

Abstract The ongoing COVID-19 pandemic requires urgently specific therapeutics and approved vaccines. Here, the four structural proteins of the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2), the causative agent of COVID-19, are screened by in-house immunoinformatic tools to identify peptides acting as potential T-cell epitopes. In order to act as an epitope, the peptide should be processed in the host cell and presented on the cell surface in a complex with the Human Leukocyte Antigen (HLA). The aim of the study is to predict the binding affinities of all peptides originating from the structural proteins of SARS-CoV-2 to 30 most frequent in the human population HLA proteins of class I and class II and to select the high binders (IC50 < 50 nM). The predicted high binders are compared to known high binders from SARS-CoV conserved in CoV-2 and 77% of them coincided. The high binders will be uploaded onto lipid nanoparticles and the multi-epitope vaccine prototype will be tested for ability to provoke T-cell mediated immunity and protection against SARS-CoV-2.

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3