A New Noisy Random Forest Based Method for Feature Selection

Author:

Akhiat Yassine1,Manzali Youness1,Chahhou Mohamed2,Zinedine Ahmed1

Affiliation:

1. Faculty of Sciences , USMBA , Fez , Morocco

2. Faculty of Sciences , UAE , Tetouan , Morocco

Abstract

Abstract Feature selection is an essential pre-processing step in data mining. It aims at identifying the highly predictive feature subset out of a large set of candidate features. Several approaches for feature selection have been proposed in the literature. Random Forests (RF) are among the most used machine learning algorithms not just for their excellent prediction accuracy but also for their ability to select informative variables with their associated variable importance measures. Sometimes RF model over-fits on noisy features, which lead to choosing the noisy features as the informative variables and eliminating the significant ones. Whereas, eliminating and preventing those noisy features first, the low ranked features may become more important. In this study we propose a new variant of RF that provides unbiased variable selection where a noisy feature trick is used to address this problem. First, we add a noisy feature to a dataset. Second, the noisy feature is used as a stopping criterion. If the noisy feature is selected as the best splitting feature, then we stop the creation process because at this level, the model starts to over-fit on the noisy features. Finally, the best subset of features is selected out of the best-ranked feature regarding the Geni impurity of this new variant of RF. To test the validity and the effectiveness of the proposed method, we compare it with RF variable importance measure using eleven benchmarking datasets.

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3