Affiliation:
1. 1 School of Computer Science and Engineering, Vellore Institute of Technology , Chennai , India
Abstract
Abstract
One of the methods most frequently used to recommend films is collaborative filtering. We examine the potential of collaborative filtering in our paper’s discussion of product suggestions. In addition to utilizing collaborative filtering in a new application, the proposed system will present a better technique that focuses especially on resolving the cold start issue. The suggested system will compute similarity using the Pearson Correlation Coefficient (PCC). Collaborative filtering that uses PCC suffers from the cold start problem or a lack of information on new users to generate useful recommendations. The proposed system solves the issue of cold start by gauging each new user by certain arbitrary parameters and recommending based on the choices of other users in that demographic. The proposed system also solves the issue of users’ reluctance to provide ratings by implementing a keyword-based perception system that will aid users in finding the right product for them.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献