Supsim: a Python package and a web-based JavaScript tool to address the theoretical complexities in two-predictor suppression situations

Author:

Nazifi Morteza1ORCID,Fadishei Hamid1ORCID

Affiliation:

1. University of Bojnord , Iran .

Abstract

Abstract Two-predictor suppression situations continue to produce uninterpretable conditions in linear regression. In an attempt to address the theoretical complexities related to suppression situations, the current study introduces two different versions of a software called suppression simulator (Supsim): a) the command-line Python package, and b) the web-based JavaScript tool, both of which are able to simulate numerous random two-predictor models (RTMs). RTMs are randomly generated, normally distributed data vectors x1 , x2 , and y simulated in such a way that regressing y on both x1 and x2 results in the occurrence of numerous suppression and non-suppression situations. The web-based Supsim requires no coding skills and additionally, it provides users with 3D scatterplots of the simulated RTMs. This study shows that comparing 3D scatterplots of different suppression and non-suppression situations provides important new insights into the underlying mechanisms of two-predictor suppression situations. An important focus is on the comparison of 3D scatterplots of certain enhancement situations called Hamilton’s extreme example with those of redundancy situations. Such a comparison suggests that the basic mathematical concepts of two-predictor suppression situations need to be reconsidered with regard to the important issue of the statistical control function.

Publisher

Polskie Towarzystwo Statystyczne

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Reference33 articles.

1. Alexander, d. L. J., Tropsha, A. & Winkler, D. A., (2015). Beware of R(2): Simple, unambiguous assessment of the prediction accuracy of QSAR and QSPR models. Journal of chemical information and modeling, 55, pp. 1316–1322.10.1021/acs.jcim.5b00206

2. Brown, N., (2005). Graphical illustration of two-predictor suppression effects, v0.05 [Online]. Available: https://steamtraen.shinyapps.io/suppressiongraphics/ [Accessed August 30 2020].

3. Cohen, J., Cohen, P., (1975). Applied multiple regression/correlation analysis for the behavioral sciences, Oxford, England, Lawrence Erlbaum.

4. Cohen, J., Cohen, P., (1983). Applied multiple regression/correlation analysis for the behavioral sciences, Hillsdale, N.J, Lawrence Erlbaum Associates.

5. Cohen, J., Cohen, P., West, S. & Aiken, L., (2003). Applied multiple regression/correlation analysis for the behavioral sciences, Mahwah, NJ, Lawrence Erlbaum Associates.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3