Variance estimation in stratified adaptive cluster sampling

Author:

Yasmeen Uzma1,Noor-ul-Amin Muhammad2ORCID,Hanif Muhammad3

Affiliation:

1. University of Waterloo , Canada . The University of Lahore , Pakistan .

2. COMSATS Institute of Information Technology , Lahore . Pakistan .

3. National College of Business Administration and Economics , Pakistan .

Abstract

Abstract In many sampling surveys, the use of auxiliary information at either the design or estimation stage, or at both these stages is usual practice. Auxiliary information is commonly used to obtain improved designs and to achieve a high level of precision in the estimation of population density. Adaptive cluster sampling (ACS) was proposed to observe rare units with the purpose of obtaining highly precise estimations of rare and specially clustered populations in terms of least variances of the estimators. This sampling design proved to be more precise than its more conventional counterparts, including simple random sampling (SRS), stratified sampling, etc. In this paper, a generalised estimator is anticipated for a finite population variance with the use of information of an auxiliary variable under stratified adaptive cluster sampling (SACS). The bias and mean square error expressions of the recommended estimators are derived up to the first degree of approximation. A simulation study showed that the proposed estimators have the least estimated mean square error under the SACS technique in comparison to variance estimators in stratified sampling.

Publisher

Polskie Towarzystwo Statystyczne

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3