Content-based load shedding in multimedia data stream management system

Author:

Maison Rafal1,Zakrzewicz Maciej2

Affiliation:

1. 1Poznan University of Technology, Institute of Computing Science, ul. Piotrowo 2, 60- 965 Poznan, Poland

2. 2Poznan University of Technology, Institute of Computing Science, ul. Piotrowo 2, 60- 965 Poznan, Poland

Abstract

Abstract.Overload management has become very important in public safety systems that analyse high performance multimedia data streams, especially in the case of detection of terrorist and criminal dangers. Efficient overload management improves the accuracy of automatic identification of persons suspected of terrorist or criminal activity without requiring interaction with them. We argue that in order to improve the quality of multimedia data stream processing in the public safety arena, the innovative concept of a Multimedia Data Stream Management System (MMDSMS) using load-shedding techniques should be introduced into the infrastructure to monitor and optimize the execution of multimedia data stream queries. In this paper, we present a novel content-centered load shedding framework, based on searching and matching algorithms, for analysing video tuples arriving within multimedia data streams. The framework tracks and registers all symptoms of overload, and either prevents overload before it occurs, or minimizes its effects. We have extended our Continuous Query Language (CQL) syntax to enable this load shedding technique. The effectiveness of the framework has been verified using both artificial and real data video streams collected from monitoring devices.

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Incremental Rule-Based Learners for Handling Concept Drift: An Overview;Foundations of Computing and Decision Sciences;2013-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3