Affiliation:
1. Faculty of Textile Engineering, Department of Textile Evaluation , Technical University of Liberec , Studentská 2 , Liberec , Czech Republic
Abstract
Abstract
Nanofiber materials offer a wide range of use in various production fields, e.g., different types of filtration, or areas requiring high hydrostatic resistance. They are made from different polymers, some of which are more hydrophobic than others, for instance some types of polyurethanes and polyvinylidene fluoride. However, even these polyurethanes cannot guarantee a high hydrophobicity of the final nanofiber material. To increase this desired property, we have to use the so-called hydrophobic substances like fluorocarbon. The nanofiber layer has to be prepared so that its pores do not get blocked, which would worsen its filtration capability and air permeability. This is why a roll-to-roll low-vacuum plasma was used in our case for creating a fabric with nanofiber layer for the clothing industry. The result is a nanofiber material with a hydrostatic resistance higher than a 15,000 mm water column. Under suitable conditions, we can produce a nanofiber membrane for clothing with thermophysiological properties similar to those of membranes produced with different principles, e.g., nanoporous membranes. The nanofiber membrane provides us desirable properties such as stability during repeated washing.
Subject
General Materials Science
Reference20 articles.
1. Singh, O. P. (1987). Stain removal characteristics of fabrics and stain-resistance/release finishing. Textile Dyer & Printer, 20(25), 24–27.
2. Duschek, G. (2001). Emissionsarme und APEO-FRIE Fluorcarbon_Austrustung. Melliand Textilberichte, 82(7/8), 135–213.
3. Ma, M., Hill, R. M. (2006). Superhydrophobic surfaces. Current Opinion in Colloid & Interface Science, 11(4), 193–202.
4. Han, D., Steckl, A. J. (2009). Superhydrophobic and oleophobic fibers by coaxial electrospinning. Langmuir, 25(16), 9454–9462.
5. Yoon, H., Park, J. H., Kim, G. H., A. (2010). Superhydrophobic surface fabricated by an electrostatic process. Macromolecular Rapid Communications, 31(16), 1435–1439.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献