Mechanism of Electrical Conductivity in Metallic Fiber-Based Yarns

Author:

Xie Juan1,Miao Menghe2,Jia Yongtang1

Affiliation:

1. School of Textile Materials and Engineering , Wuyi University , Jiangmen , Guangdong Province, China

2. CSIRO Manufacturing , 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia

Abstract

Abstract We explore the conductive mechanism of yarns made from metallic fibers and/or traditional textile fibers. It has been proposed for the first time, to our knowledge, that probe span length plays a great role in the conductivity of metallic fiber-based yarns, which is determined by the probability and number of conductive fibers appearing on a cross section and their connecting on two neighboring sections in a yarn’s longitudinal direction. The results demonstrate that yarn conductivity is negatively influenced to a large extent by its length when metallic fibers are blended with other nonconductive materials, which is beyond the scope of conductivity theory for metal conductors. In addition, wicking and wetting performances, which interfere with fiber distribution and conductive paths between fibers, have been shown to have a negative influence on the conductivity of metallic fiber-based yarns with various structures and composed of different fiber materials. Such dependence of the conductivity on the probe span length, as well as on the moisture from air and human body, should get attention during investigation of the conductivity of metallic fiber-based composites in use, especially in cases in which conductive yarns are fabricated into flexible circuit boards, antennas, textile electrodes, and sensors.

Publisher

Walter de Gruyter GmbH

Subject

General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3