Affiliation:
1. Rue de la Brasserie 5, 7100 La Louvière , Belgium
Abstract
Summary
Tim Makarios (with Isabelle/HOL1) and John Harrison (with HOL-Light2) shown that “the Klein-Beltrami model of the hyperbolic plane satisfy all of Tarski’s axioms except his Euclidean axiom” [3], [4], [14], [5].
With the Mizar system [2], [7] we use some ideas are taken from Tim Makarios’ MSc thesis [13] for the formalization of some definitions (like the absolute) and lemmas necessary for the verification of the independence of the parallel postulate. This work can be also treated as further development of Tarski’s geometry in the formal setting [6]. Note that the model presented here, may also be called “Beltrami-Klein Model”, “Klein disk model”, and the “Cayley-Klein model” [1].
Subject
Applied Mathematics,Computational Mathematics
Reference15 articles.
1. [1] Norbert A’Campo and Athanase Papadopoulos. On Klein’s so-called non-Euclidean geometry. arXiv preprint arXiv:1406.7309, 2014.
2. [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.10.1007/978-3-319-20615-8_17
3. [3] Eugenio Beltrami. Saggio di interpetrazione della geometria non-euclidea. Giornale di Matematiche, 6:284–322, 1868.
4. [4] Eugenio Beltrami. Essai d’interprétation de la géométrie non-euclidéenne. In Annales scientifiques de l’École Normale Supérieure. Trad. par J. Hoüel, volume 6, pages 251–288. Elsevier, 1869.10.24033/asens.60
5. [5] Karol Borsuk and Wanda Szmielew. Podstawy geometrii. Państwowe Wydawnictwo Naukowe, Warszawa, 1955 (in Polish).
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Checking for non-Euclidean latent geometry of biological networks;2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2022-12-06
2. Duality Notions in Real Projective Plane;Formalized Mathematics;2021-12-01
3. Formalization of the Poincaré Disc Model of Hyperbolic Geometry;Journal of Automated Reasoning;2020-04-30
4. Klein-Beltrami model. Part IV;Formalized Mathematics;2020-04-01
5. Cross-Ratio in Real Vector Space;Formalized Mathematics;2019-04-01