de novo TINF2 C.845G>A: Pathogenic Variant in Patient with Dyskeratosis Congenita

Author:

Kocheva SA1,Gjorgjievska M2,Martinova K1,Antevska-Trajkova Z1,Jovanovska A1,Plaseska-Karanfilska D2

Affiliation:

1. Pediatric Clinic for Children's Diseases , Ss. Cyril and Methodius University in Skopje, Faculty of Medicine , Skopje , North Macedonia

2. Research Centre for Genetic Engineering and Biotechnology “Georgi D. Efremov” , Macedonian Academy of Sciences and Arts , Skopje , North Macedonia

Abstract

Abstract Dyskeratosis congenita (DC) is a clinically and genetically heterogeneous, multisystem inherited syndrome with a very high risk for bone marrow failure (BMF) and cancer predisposition. The classical clinical form of DC is characterized by abnormal skin pigmentation, nail dystrophy, and oral leukoplakia. Bone marrow failure is considered to be an important and major complication of DC and the leading cause of death which develops in around 85% of cases. A number of genes involved in telomere maintenance are associated with DC, such as genes that encode the components of the telomerase complex (TERT, DKC1, TERC, NOP10, and NHP2), T-loop assembly protein (RTEL1), telomere capping (CTC1), telomere shelterin complex (TINF2), and telomerase trafficking protein (TCAB1). Mutations in TINF2 have been reported in 11–20% of all patients with DC and have been associated with bone marrow failure. Here we report on a 19-month old boy with very early presentation of bone marrow failure as a first clinical manifestation of DC. Upon first admission, the patient presented with thrombocytopenia and macrocytic anemia. Soon after, his blood counts deteriorated with the development of pancytopenia and aplastic anemia. Four months later, he developed nail dystrophy and skin hyperpigmentation. A de novo heterozygous pathogenic variant c.845G>A, p.(Arg282His) was located in exon 6 of TINF2 gene and was identified via clinical exome sequencing. The findings confirmed the diagnosis of DC. This is the first case with DC due to TINF2 pathogenic variant reported in North Macedonia.

Publisher

Walter de Gruyter GmbH

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3