Sur la variation de certaines suites de parties fractionnaires

Author:

Balazard Michel1,Benferhat Leila2,Bouderbala Mihoub2

Affiliation:

1. Institut de Mathématiques de Marseille, CNRS , Université d’Aix-Marseille , Campus de Luminy, Case 907, 13288 Marseille Cedex 9 , France

2. Institut de Mathématiques-USTHB, LA3C , Université des sciences et de la technologie Houari-Boumédične, Bab Ezzouar, ALGÉRIE

Abstract

Abstract Let b > a > 0. We prove the following asymptotic formula n 0 | { x / ( n + a ) } - { x / ( n + b ) } | = 2 π ζ ( 3 / 2 ) c x + O ( c 2 / 9 x 4 / 9 ) , \sum\limits_{n \geqslant 0} {\left| {\left\{ {x/\left( {n + a} \right)} \right\} - \left\{ {x/\left( {n + b} \right)} \right\}} \right| = {2 \over \pi }\zeta \left( {3/2} \right)\sqrt {cx} + O\left( {{c^{2/9}}{x^{4/9}}} \right),} with c = ba, uniformly for x ⩾ 40c −5(1 + b)27/2.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference5 articles.

1. [1] M. Balazard: Sur la variation totale de la suite des parties fractionnaires des quotients d’un nombre réel positif par les nombres entiers naturels consécutifs. Mosc. J. Comb. Number Theory 7 (2017) 3–23.

2. [2] J.G. van der Corput: Méthodes d’approximation dans le calcul du nombre des points à coordonnées entières. Enseign. Math. 23 (1923) 5–29.

3. [3] J.G. van der Corput: Neue zahlentheoretische Abschätzungen. Math. Ann. 89 (1923) 215–254.

4. [4] J.G. van der Corput: Zahlentheoretische Abschätzungen mit Anwendung auf Gitterpunktprobleme. Math. Z. 17 (1923) 250–259.

5. [5] A. Wintner: Square root estimates of arithmetical sum functions. Duke Math. J. 13 (1946) 185–193.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3