Stability analysis of fourth-order iterative method for finding multiple roots of non-linear equations
Author:
Affiliation:
1. Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València , Cno. de Vera s/n, 46022 Valencia Spain
2. Department of Mathematics, Maulana Azad National Institute of Technology , Bhopal , M.P.-462051 , India
Abstract
Publisher
Walter de Gruyter GmbH
Subject
Applied Mathematics,Engineering (miscellaneous),Modeling and Simulation,General Computer Science
Link
https://www.sciendo.com/pdf/10.2478/AMNS.2019.1.00005
Reference12 articles.
1. R. Behl, Alicia Cordero, S .S. Motsa, J. R. Torregrosa. (2015) On developing fourth-order optimal families of methods for multiple roots and their dynamics, Appl. Math. Comput., 265, 520–532.
2. R. Behl, A. Cordero, S. S. Motsa, J. R. Torregrosa and V. Kanwar. (2016), An optimal fourth-order family of methods for multiple roots and its dynamics, Numer. Algor., 71, 775–796.
3. P. Blanchard. (1984), Complex analytic dynamics on the Riemann sphere, Bull. Amer. Math. Soc., 11(1), 85–141.
4. J. L. Hueso, E. Martinez and C. Teruel. (2015), Determination of multiple roots of nonlinear equations and applications, J. Math. Chem., 53, 880–892.
5. H. T. Kung and J. F. Traub. (1974), Optimal order of one-point and multipoint iteration, J. ACM, 21, 643–651.
Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Symmetry analysis, conservation laws and exact soliton solutions for the $$(n+1)$$-dimensional modified Zakharov–Kuznetsov equation in plasmas with magnetic fields;Optical and Quantum Electronics;2024-07-18
2. A Class of Fifth-Order Chebyshev–Halley-Type Iterative Methods and Its Stability Analysis;Fractal and Fractional;2024-03-06
3. Statistical Model of College Students’ Mental Health Based on the Law of Large Numbers;Applied Mathematics and Nonlinear Sciences;2023-01-01
4. Family of fourth-order optimal classes for solving multiple-root nonlinear equations;Journal of Mathematical Chemistry;2022-12-15
5. Multitarget Pedestrian Tracking Algorithm Based on a Contour Template with Multiscale Stability;Discrete Dynamics in Nature and Society;2022-09-14
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3