Identification of superior hybrid clones for fibre biometry in Eucalyptus camaldulensis × E. tereticornis using multi trait stability index

Author:

Parveen Abdul Bari Muneera1,Jayabharathi K.1,Muthupandi Muthusamy1,Kumar Naveen2,Chauhan Shakti Singh2,Rajasugunasekar D.1,Dasgupta Modhumita Ghosh1

Affiliation:

1. ICFRE-Institute of Forest Genetics and Tree Breeding , R.S. Puram , Coimbatore , India

2. ICFRE-Institute of Wood Science and Technology , 18th Cross Malleshwaram , Bangalore , India

Abstract

Abstract Genotype × environment (G×E) interaction is a major challenge in selecting superior genotypes based on growth traits in Eucalyptus since phenotypic variability is significantly affected by environmental heterogeneity. The aim of the present investigation was to understand the relationship between wood property traits and fibre biometry in the bi-parental mapping population of E. camaldulensis × E. tereticornis across three locations and identify stable genotypes based on multiple traits to improve prediction accuracy in breeding programs. High broad-sense heritability was documented for fibre parameters indicating a good prospect of these traits for genotype selection in hybrid breeding programmes in Eucalyptus. Significant positive correlation of fibre parameters with cellulose, acoustic velocity, DMoE and negative correlation with lignin reiterate that the fibre traits can be improved by the selection of genotype for improved wood property traits. Multi-Trait Stability Index (MTSI) and weighted average of absolute scores of the genotype index (WAASB) short-listed four genotypes (C343, C327, C246 and C161) with improved wood property traits and the mean of selected genotypes for all traits was significantly higher than the grand mean of the overall genotypes. The identified superior and stable genotypes with improved wood properties and fibre biometry can be used in plantation programs or as genitors in breeding programs.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3