Valorization of a Steel Industrial Co-Product for the Development of Alkali-Activated Materials: Effect of Curing Environments

Author:

Sarri Arezki1,Oualit Mehena2,Kennouche Salim3

Affiliation:

1. 1 Laboratory of Polymers Treatment & Forming , M’Hamed Bougara University , Boumerdes , Algeria

2. 2 Research Unit: Materials, Processes and Environment (UR-MPE), Faculty of Technology , M’hamed Bougara University , Boumerdes , Algeria

3. 3 Department of Civil Engineering, Faculty of Sciences , Bouira University , Algeria

Abstract

Abstract While natural resources are becoming scarce and climate change is accelerating, the recovery and recycling of wastes and by-products is an effective way to deal with the economic and ecological constraints of recent decades. The valorization of industrial by-products in civil engineering is a common practice either by their incorporation during the manufacture of Portland cements or as a partial replacement of cement during the production of concrete. The present work aims to develop waste-based alkali-activated materials WAAMs intended for civil engineering applications as a potential alternative to cement-based materials. A steel industrial by-product called commonly granulated blast furnace slag GBFS was used alone as a solid CaO-rich precursor; two alkaline activators such us sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) were used separately for the production of two-part alkali-activated materials. Besides the microstructure analysis of the hardened samples, the influence of activator/precursor mass ratio, NaOH molarity, and two curing environments (Room temperature and 60°C) on the compressive strength, water accessible porosity, mass loss, and drying shrinkage were assessed. The results showed that a high Liquid/Solid ratio leads to a decrease in the compressive strength of the samples, while high NaOH molarity significantly improves the mechanical properties by reducing the porosity of the specimens. Moreover, alkaline silicate activator provides higher compressive strengths compared to the alkaline hydroxide activator, especially when the samples were cured at room temperature where a maximum 28days-compressive strength value of 105.28 MPa was achieved. For the samples activated using sodium hydroxide solution, the results revealed that their curing at 60°C promotes obtaining high initial-compressive strengths (7 days) before decreasing subsequently as a function of the curing time. As an indication, at high alkaline concentration (NaOH = 9M), a mechanical strength decline of 21% was recorded between a curing time of 7 to 28 days. Moreover, curing at 60°C induced high porosity, significant mass loss and high drying shrinkage. SEM analysis highlighted a dense, homogeneous microstructure without apparent defects, in particular for the samples where the alkali silicate activator was used.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3