Mathematical Model for Friction Stir Lap Welded AA5052 and SS304 Joints and Process Parameters Optimization for High Joint Strength

Author:

Chitturi Veerendra1,Pedapati Srinivasa Rao1,Awang Mokhtar1

Affiliation:

1. Universiti Teknologi PETRONAS , Perak, Department of Mechanical Engineering , , Malaysia

Abstract

Abstract Due to the numerous challenges faced during the dissimilar welding, choosing the right process parameters and their optimization yields better results. In this context, the current investigation is focused on the optimization of process parameters. Taguchi’s L9 orthogonal array was selected to carry out the experimental investigations. The welded samples were tested for shear strength, and the results were analysed using Taguchi’s S/N ratio analysis with “larger the better” criteria. Log-linear regression analysis was applied to formulate an empirical correlation between the process parameters and shear strength. According to S/N ratio analysis, the tool rotational speed of 800 rpm, welding speed of 20 mm/min and a penetration depth of 4.1 mm are the optimized parameters that achieve high joint strength. The achieved joint strength was 3.46 kN that is 70% of the base aluminium metal. It was noticed from the Analysis of variance of the regression model that penetration depth and tool rotational speed are the significant contributors with p-values less than 0.5. Confirmation tests show that the error between the predicted and calculated shear strength is 2.06% which is considered acceptable. R2 and adjusted R2 values of the model with a standard error of 0.076 show that the developed model is statistically significant.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3