Deep reinforcement learning based computing offloading in unmanned aerial vehicles for disaster management

Author:

Kesavan Anuratha1,Mohanram Nandhini Jembu1,Joshi Soshya2,Sankar Uma3

Affiliation:

1. Sri Sai Ram Institute of Technology , Chennai , India

2. SRM Institute of Science and Technology , Chennai , India

3. Panimalar Engineering College , Chennai , India

Abstract

Abstract The emergence of Internet of Things enabled with mobile computing has the applications in the field of unmanned aerial vehicle (UAV) development. The development of mobile edge computational offloading in UAV is dependent on low latency applications such as disaster management, Forest fire control and remote operations. The task completion efficiency is improved by means of using edge intelligence algorithm and the optimal offloading policy is constructed on the application of deep reinforcement learning (DRL) in order to fulfill the target demand and to ease the transmission delay. The joint optimization curtails the weighted sum of average energy consumption and execution delay. This edge intelligence algorithm combined with DRL network exploits computing operation to increase the probability that at least one of the tracking and data transmission is usable. The proposed joint optimization significantly performs well in terms of execution delay, offloading cost and effective convergence over the prevailing methodologies proposed for UAV development. The proposed DRL enables the UAV to real-time decisions based on the disaster scenario and computing resources availability.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3