Mutually coupled dual-stage RC feedback LNA for RF applications

Author:

Kumar Manish1,Kalra Dheeraj1,Shukla Aasheesh1

Affiliation:

1. ECE Department , GLA University Mathura , Uttar Pradesh , , India

Abstract

Abstract The designed circuit features a dual-stage Low Noise Amplifier (LNA) in which, a common source (CS) configuration is employed to achieve high gain, while the subsequent stage adopts a Complementary Common Gate (CCG) setup provide the low power consumption. This arrangement ensures that both transistors share the same biasing current, promoting energy efficiency. The two stages are interconnected in a cascade configuration, amplifying the overall gain and concurrently mitigating noise. To facilitate wideband matching in the input stage, a parallel RC feedback mechanism is implemented. Additionally, a pair of mutually coupled inductors in the CS and CCG stages contribute to rendering the input impedance exclusively resistive, concurrently minimizing the overall size of the circuit. All simulations were done using 65 nm CMOS technology in Cadence Virtuoso. The proposed LNA showcases a Noise Figure (NF) of 3.2 dB, a Peak Power Gain (S 21) of 19.8 dB, and an input reflection coefficient (S 11) of –16.2 dB, spanning a bandwidth of 3.1-6.2 GHz. Operating on a 1V power supply, the proposed LNA demonstrates power efficiency by consuming only 2.8 mW. The overall performance assessment of the LNA is gauged using the Figure of Merit, yielding an obtained value of 18.2. Comparative analysis with other cutting-edge designs is presented in Table 1.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3