Structure and local parameters of self-compressed plasma streams in external magnetic field
Author:
Volkova Yuliia1, Solyakov Dmytro2, Marchenko Anna3, Chebotarev Volodymyr2, Garkusha Igor1, Makhlai Vadym2, Ladygina Maryna3, Merenkova Tetyana2, Yeliseyev Dmytro2, Petrov Yurii2, Staltsov Valerii2
Affiliation:
1. Institute of Plasma Physics National Science Center, “Kharkiv Institute of Physics and Technology” , Kharkiv , Ukraine and V. N. Karazin Kharkiv National University , Kharkiv , Ukraine 2. Institute of Plasma Physics National Science Center, “Kharkiv Institute of Physics and Technology” , Kharkiv , Ukraine 3. Institute of Plasma Physics National Science Center, “Kharkiv Institute of Physics and Technology” , Kharkiv , Ukraine and Institute of Plasma Physics and Laser Microfusion , Hery 23 St. , Warsaw , Poland
Abstract
Abstract
The influence of the external axial magnetic field on pinching plasma flows generated by a magnetoplasma compressor (MPC) has been studied using magnetic and electric probes. In the presence of an external magnetic field, temperature measurements show two groups of electrons with different temperatures near the plasma stream core. The external magnetic field leads to a noticeable increase in the electric current in the plasma stream, electron temperature, and the formation of the current-sheet-like structure observed in the MPC for the first time.
Publisher
Walter de Gruyter GmbH
Subject
Waste Management and Disposal,Condensed Matter Physics,Safety, Risk, Reliability and Quality,Instrumentation,Nuclear Energy and Engineering,Nuclear and High Energy Physics
Reference17 articles.
1. Garkusha, I. E., Makhlai, V. A., Petrov, Yu. V., Herashchenko, S. S., Ladygina, M. S., Aksenov, N. N., Byrka, O. V., Chebotarev, V. V., Kulik, N. V., Staltsov, V. V., & Pestchanyi, S. (2021). Vapour shielding of liquid-metal CPS-based targets under ELM-like and disruption transient loading. Nucl. Fusion, 61, 116040. DOI: 10.1088/1741-4326/ac26ec. 2. Zdunek, K. (1995). Spreading of impulse plasma within a coaxial accelerator. Surf. Coat. Technol., 74/75, 949–952. DOI: 10.1016/0257-8972(95)80038-7. 3. Zdunek, K., & Karwat, T. (1996). Distribution of magnetic field in the coaxial accelerator of impulse plasma. Vacuum, 47(11), 1391–1394. DOI: 10.1016/S0042-207X(96)00180-7. 4. Garkusha, I. E., Cherednychenko, T. N., Ladygina, M. S., Makhlay, V. V., Petrov, Yu. V., Solyakov, D. G., Staltsov, V. V., Yelisyeyev, D. V., & Hassanein, A. (2014). EUV radiation from pinching discharges of magnetoplasma compressor type and its dependence on the dynamics of compression zone formation. Phys. Scr. T, 161, 014037. DOI: 10.1088/0031-8949/2014/T161/014037. 5. Solyakov, D. G., Petrov, Y. V., Garkusha, I. E., Chebotarev, V. V., Ladygina, M. S., Cherednichenko, T. N., Morgal’, Ya. I., Kulik, N. V., Staltsov, V. V., & Eliseev, D. V. (2013). Formation of the compression zone in a plasma flow generated by a magnetoplasma compressor. Plasma Phys. Rep., 39, 986–992. DOI: 10.1134/S1063780X13110081.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|