Configuration of the parameters for scanner-based track detector evaluation system

Author:

Csordás Anita1ORCID,Tóth-Bodrogi Edit2ORCID,Kovács Tibor1ORCID

Affiliation:

1. Institute of Radiochemistry and Radioecology , University of Pannonia , Egyetem 10 St., H-8200 Veszprém, Hungary , and Social Organisation for Radioecological Cleanliness József Attila 7/A 2/10 St., H-8200 Veszprém , Hungary

2. Institute of Radiochemistry and Radioecology , University of Pannonia , Egyetem 10 St., H-8200 Veszprém , Hungary

Abstract

Abstract According to the new European Union Basic Safety Standards (EU-BSS), preparation of the National Radon Action Plan is obligatory for the Member States. One of the plan’s aims is to carry out an indoor radon survey to identify radon-prone areas. In the radon surveys, track detector methods are used. At the University of Pannonia (Veszprém, Hungary), a new scanner-based detector evaluation system has been developed. For the application of the new system, the selection of appropriate parameters is necessary. In this study, selection of the applied track detectors and setting of the etching conditions have been carried out. Two different types of allyl diglycol carbonate (ADC or CR-39) track detectors were investigated, taking into account the detector’s background and response during the exposure (determination of calibration factor). The Baryotrak’s background track density (0–1.5 tracks mm−2) was lower than that of the 0.8–4 tracks mm−2. The response of the Tastrak was higher, but the deviation of the calibration factor was much higher (1.2–5.3 × 10−3 tracks mm−2/(Bq day m−3)) than in the case of the Baryotrak (1.4–2.8 × 10−3 tracks mm−2/(Bq day m−3)). After the systematic review of the etching system, a new method was developed. For the determination of the optimal track diameter, the argon fluoride (ArF) laser was applied to create tracks with diameters in the range of 10–100 μm. The optimum track size was in the range of 40–60 μm. On this basis, new etching conditions were determined: 6.25 M NaOH solution, a temperature of 90°C, and time period of 8 hours.

Publisher

Walter de Gruyter GmbH

Subject

Waste Management and Disposal,Condensed Matter Physics,Safety, Risk, Reliability and Quality,Instrumentation,Nuclear Energy and Engineering,Nuclear and High Energy Physics

Reference24 articles.

1. 1. United Nations Scientific Committee on the Effects of Atomic Radiation. (2000). Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes. Vol. 1: Sources. New York: United Nations.

2. 2. Podstawczyńska, A., & Pawlak, W. (2016). Soil heat flux and air temperature as factors of radon (Rn-222) concentration in the near-ground air layer. Nukleonika, 61(3), 231–237. DOI: 10.1515/nuka-2016-0039.10.1515/nuka-2016-0039

3. 3. Gregorič, A., Vaupotič, J., Kardos, R., Horváth, M., Bujtor, T., & Kovács, T. (2013). Radon emanation of soils from different lithological units. Carpath. J. Earth Environ. Sci., 8(2), 185–190.

4. 4. Chalupnik, S., & Wysocka, M. (2003). Measurement of radon exhalation from soil – development of the method and preliminary results. J. Mining Sci., 39, 191–198. https://doi.org/10.1023/B:JOMI.0000008467.53630.09.10.1023/B:JOMI.0000008467.53630.09

5. 5. Wysocka, M., Kotyrba, A., Chalupnik, S., & Skowronek, J. (2005). Geophysical methods in radon risk studies. J. Environ. Radioact., 82(3), 351–362. DOI: 10.1016/j.jenvrad.2005.02.009.10.1016/j.jenvrad.2005.02.009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigations of indoor radon levels and its mapping in the Greater Accra region, Ghana;Journal of Radioanalytical and Nuclear Chemistry;2023-10-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3