Confinement effectiveness of CFRP strengthened ultra-high performance concrete cylinders exposed to elevated temperatures

Author:

Abadel Aref A.1,Alharbi Yousef R.1

Affiliation:

1. Department of Civil Engineering , College of Engineering , King Saud University , Saudi Arabia

Abstract

Abstract Fire-related damage is an alarming concern to reinforced concrete (RC) structures throughout their service lives. When exposed to extreme temperatures, concrete can endure severe damage. Given that a complete replacement and/or demolition of fire-damaged structures can be an economic waste, a more viable option for extending the service life of the damaged structures involves repairing or strengthening the damaged members. Due to its more efficient qualities over conventional concrete, the use of concrete, such as ultra-high-performance concrete (UHPC) in the building industry, has dramatically grown in recent years. However, limited information is available about the confinement behavior of the unheated and heated UHPC members, particularly when wrapped with fiber-reinforced polymers (FRP). This paper investigates the effect of carbon fiber reinforced polymer (CFRP) sheet strengthening on the compressive strength of both UHPC and ultra-high-performance fiber reinforced concrete (UHPFRC). In this study, strengthening has been considered for the UHPC cylinders before and after they were subject to an elevated temperature of 400°C, and they were left to cool by air cooling. Six UHPC mixes, which were made without the use of fibers, steel fibers (SF) alone, a hybrid system of SF and polyethylene alcohol (PVA), in addition to a hybrid system of steel, PVA, and polypropylene (PP) fibers were tested. Regarding the plain and various fiber-reinforced UHPC both at room temperature and after being exposed to 400°C, the ultimate compressive strength of CFRP-confined concrete has shown an increase by 25% to 33% and 52% to 61%, respectively compared with the unheated specimens.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3