A study on the mixed properties of green controlled low strength cementitious

Author:

Chen Sung-Ching1,Lin Wei-Ting2,Lin Kae-Long3,Huang Po-Yu2

Affiliation:

1. School of Civil and Architectural Engineering , East China University of Technology , 418 Guanglan AV . Nanchang , Jiangxi , , China

2. Department of Civil Engineering , National Ilan University , No. 1, Sec. 1, Shennong Rd. , Yilan City , Yilan County , , Taiwan

3. Department of Environmental Engineering , National Ilan University , No. 1, Sec. 1, Shennong Rd. , Yilan City , Yilan County , , Taiwan

Abstract

Abstract In this study, two industrial wastes – circulating fluidized bed combustion co-fired fly ash (CFA) and ground granulated blast-furnace slag (GGBS) – were used as green materials instead of cementitious materials in controllable low strength material (CLSM). CLSM was used to backfill the pavement. CLSM should meet the compressive strength requirements of the CLSM specification (under 8.24 MPa), and it had the self-consolidating characteristics of fluidized concrete. In order to comply with the characteristics of self-consolidation, a mix design including superplasticizers, adhesives, and accelerators were used to ensure that the proportion could meet the requirements of both CLSM and the self-consolidating properties. The test methods included the slump flow test, ball drop test, strength activity index, compressive strength, mercury intrusion porosimetry, chlo-ride migration test, and scanning electron microscope. A water/cement ratio of 0.85 was used as the mix design for the CLSM requirements. The CFA and GGBS used in CLSM could replace 78 wt.% of the cement, and CLSM could effectively meet the requirements of the workability, strength and microscopic properties.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3