Multiobjective optimization of fluphenazine nanocomposite formulation using NSGA-II method

Author:

Abu Sharar Ahmed Adnan1,Ramadan Saleem Z.1,Hussein-Al-Ali Samer Hasan2

Affiliation:

1. Department of Industrial Engineering, School of Applied Technical Sciences , German Jordanian University-Jordan , Amman – Jordan

2. Basic Pharmaceutical Sciences, Faculty of Pharmacy , Isra University-Jordan , Amman – Jordan

Abstract

Abstract The World Health Organization (WHO, 2019) reports that schizophrenia affects approximately 20 million people worldwide, and the annual number of new cases is estimated at 1.5%/10,000 people. As a result, there is a demand for making the relevant medicines work better. Using a fluphenazine (FZN) drug delivery system that has been optimized using nanoparticles (NPs) technology is an important alternative treatment option for noncompliant patients with schizophrenia. Compared to the conventional delivery system, the NPs delivery system provides a controlled-release treatment, minimizes drug levels reaching the blood, and has fewer side effects as well. As a result of using the NPs delivery system, patients can obtain the benefits of reduced daily dosing and improved compliance. In this context, this study was performed to develop a mathematical model for FZN to optimize its nanocomposite delivery system using a mixture-process DoE and multiobjective optimization (MOO) approaches. The influences of NPs input fabrication parameters [i.e., FZN percentage, chitosan (CS) percentage, sodium tripolyphosphate (TPP) percentage, and pH] were investigated by mixture-designed experiments and analyzed by analysis of variance (ANOVA); subsequently, based on the results of the analysis, three regression models were built for size, zeta potential (ZP), and drug loading efficiency (LE%); and thereafter, these models were validated using 26 experiments with three replicates. The MOO approach was employed using a non-dominated sorting genetic algorithm (NSGA-II) to provide the optimal fitness value of each objective function by minimizing NPs size, maximizing ZP, and maximizing LE%. Test of hypotheses showed no statistical differences between the average observed values and the corresponding predicted values calculated by the regression models (126.6 nm, 18.7 mV, and 91.6%, respectively). As there is no benchmark available for the optimal NPs input fabrication parameters in the literature, the optimized formulation was further characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), polydispersity index (PdI), and differential scanning calorimetry (DSC). Those tests indicated that FZN was successfully encapsulated into the final nanocomposite. Furthermore, an in-vitro drug release study was carried out and showed that at least 5 days would be needed for FZN to be fully released from its nanocomposite in a sustained-release pattern. The nanocomposite could serve as a model for the controlled and extended delivery of many drugs.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3