Review of numerical methods for NumILPT with computational accuracy assessment for fractional calculus

Author:

Brzeziński Dariusz W.1

Affiliation:

1. Institute of Applied Computer Science , Lodz University of Technology , 18/22 Stefanowskiego St., 90-924 , Łódź , Poland

Abstract

Abstract In the paper we present results of accuracy evaluation of numerous numerical algorithms for the numerical approximation of the Inverse Laplace Transform. The selected algorithms represent diverse lines of approach to this problem and include methods by Stehfest, Abate and Whitt, Vlach and Singhai, De Hoog, Talbot, Zakian and a one in which the FFT is applied for the Fourier series convergence acceleration. We use C++ and Python languages with arbitrary precision mathematical libraries to address some crucial issues of numerical implementation. The test set includes Laplace transforms considered as difficult to compute as well as some others commonly applied in fractional calculus. Evaluation results enable to conclude that the Talbot method which involves deformed Bromwich contour integration, the De Hoog and the Abate and Whitt methods using Fourier series expansion with accelerated convergence can be assumed as general purpose high-accuracy algorithms. They can be applied to a wide variety of inversion problems.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Modeling and Simulation,General Computer Science

Reference45 articles.

1. K. Oldham and J. Spanier. The Fractional Calculus. Theory and Applications of Differentiation and Integration to Arbitrary Order. Academic Press, INC, San Diego Ca, 1974.

2. K. S. Miller and B. Ross. An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley & Sons, Inc., New York, NY, 1993.

3. S. Samko, A. Kilbas, and O. Marichev. Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, London, 1993.

4. I. Podlubny. Fractional Differential Equations. Academic Press, INC, San Diego Ca, 1999.

5. K. Diethlem. The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer-Verlag, Berlin, Heidelberg, 2010.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3