Affiliation:
1. 1 Assistant Prof. , Wroclaw University of Science and Technology , Faculty of Environmental Engineering , Wybrzeże Wyspiańskiego 27 , Wroclaw , Poland
2. 2 Associate Prof. , Wroclaw University of Science and Technology , Faculty of Environmental Engineering , Wybrzeże Wyspiańskiego 27 , Wroclaw , Poland
Abstract
Abstract
There are many benefits of building construction with prefabricated thermo active ceilings technology, and the most highlighted are: short lead time, ease of installation, low price, lack of taking up space in a room and additionally the possibility of working in heating and/or cooling mode. An analysis was carried out to illustrate the factors that influence the thermal output of a ceiling heating system in residential buildings located in 5 climate zones in Poland and 2 in Ukraine. The thermal loads were determined for the entire building, designed in accordance with the regulations in force in each country, for the flats and particular rooms (considering the heat exchange between the flats according to PN-EN 12831:2006). An average heating medium temperature of 34°C was assumed. The results were compared with the achievable heating capacity of the ceiling system, which results from the difference between the heating medium temperature and the indoor room temperature. It was investigated that the system achieves the calculated output in all climate zones in Poland, while it will not be sufficient in Ukraine. This is due to both less stringent building thermal protection regulations and different indoor design temperature values, resulting in a higher average temperature in the flat. When analysed on a room-by-room basis, it became apparent that in all considered locations there were rooms for which the heating capacity was insufficient. In the climate zones I to IV in Poland, the problem concerns only bathrooms, where in this case quite often the surface heating can be combined with a supplementary electric radiator. In the V climate zone in Poland and both in Ukraine, the solution to the power shortage under design conditions may be: building construction according to a higher energy standard, increasing the supply temperature (with the limitation of maximum ceiling surface temperature to 35°C for living spaces) or using additional heating elements not only in bathrooms. A novel part of the article discusses calculated power shortages in relation to climate change and the external design temperatures suggested by sources other than the standard.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献