Dynamic failure mechanism of copper foil in laser dynamic flexible forming

Author:

Shen Zongbao123,Zhang Lei2,Li Pin2,Liu Kai3,Lin Youyu3,Zhou Guoyang3,Wang Yang3,Zhang Jindian2,Liu Huixia2,Wang Xiao2

Affiliation:

1. School of Materials Science and Engineering , Jiangsu University , Zhenjiang 212013 , China

2. School of Mechanical Engineering , Jiangsu University , Zhenjiang 212013 , China

3. SUMEC Hardware and Tools Co., Ltd. , Nanjing 210032 , China

Abstract

Abstract Laser dynamic flexible forming (LDFF) is a novel high velocity forming (HVF) technology, in which the foil metal is loaded by laser shock wave. Strain localization is readily to occur around the bulge edge, which will result in the ultimate dynamic failure. In this work, the microstructures before and after dynamic fracture are characterized by transmission electron microscopy (TEM) to investigate the dynamic failure mechanism. The plastic deformation regions of copper foil are composed of shock compression, strain localization and bulge. Microstructure refinement was observed in three different plastic deformation regions, particularly, dynamic recrystallization (DRX) occurs in the strain localization and bulge regions. In bulge region, extremely thin secondary twins in the twin/matrix (T/M) lamellae are formed. The microstructure features in the strain localization region show that superplastic flow of material exists until fracture, which may be due to DRX and subsequent grain boundary sliding (GBS) of the recrystallized grains. The grain coarsening in strain localization region may degrade the material flowing ability which results in the dynamic fracture.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference40 articles.

1. [1] Daehn G.S., High-velocity metal forming: ASM International, Materials Park, Ohio, 2006.

2. [2] Zhang Y., Babu S. S., Prothe C., Blakely M., Kwasegroch J., Laha M., J. Mater. Process. Technol., 211 (2011), 944.

3. [3] Khardin M., Harhash M., Chernikov D., Glushchenkov V., Palkowski H., Compos. Struct., 252 (2020), 112729.

4. [4] Iyama H., Higa Y., Nishi M., Itoh S., Int. J. Mult., 11 (2017), 233.

5. [5] Li J., Gao H., Cheng G.J., J. Manuf. Sci. Eng.-Trans., ASME 132 (2010), 061005.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3