Building superior lighting properties for WLEDs utilizing two-layered remote phosphor configurations

Author:

Anh Nguyen Doan Quoc1,Van Ngoc Hoang2

Affiliation:

1. Power System Optimization Research Group , Faculty of Electrical and Electronics Engineering , Ton Duc Thang University , Ho Chi Minh City , Vietnam

2. Institute of Applied Technology , Thu Dau Mot University , Binh Duong province , Vietnam

Abstract

Abstract The remote phosphor structure produces higher luminous flux but delivers poorer color quality than the conformal or in-cup phosphor structure. To eliminate this weakness, researchers have attempted to improve the chromatic properties of remote phosphor package. This study tends to enhance lighting features for WLEDs including color quality and luminous flux in general or color rendering index (CRI) and color quality scale (CQS) in particular by applying dual-layer remote phosphor structure. In the simulation section, we utilize two identical LEDs that only differ in correlated color temperature values which are 6600 K and 7700 K. The study offers an idea of placing a yellow-green phosphor layer SrBaSiO4:Eu2+ or a red phosphor layer SrwFxByOz:Eu2+,Sm2+ on the yellow phosphor layer YAG:Ce3+ and then modifying the concentrations of SrwFxByOz:Eu2+,Sm2+ and SrBaSiO4:Eu2+ to the suitable values to improve the color quality and lumen output of WLEDs. The results show that red phosphor layer SrwFxByOz:Eu2+,Sm2+ has a significant influence on CRI and CQS improvement. Particularly, the increase of SrwFxByOz:Eu2+,Sm2+ concentration leads to increased CRI and CQS because the red light component increases in WLEDs. On the other hand, the green phosphor layer SrBaSiO4:Eu2+ only brings benefit to the luminous flux. However, the WLEDs’ luminous flux and color quality drop sharply, when SrwFxByOz:Eu2+,Sm2+ and SrBaSiO4:Eu2+ concentrations rise extremely, which is verified based on the Mie-scattering theory and the Lambert-Beer law. In short, the article provides general knowledge and primary information for the production of higher-quality WLEDs.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3