The influence of self-doping of stibnite ore with impurities on the preparation, heat capacity, magnetic and transport properties of tetrahedrite Cu12Sb4S13

Author:

Chen Yuqi12,Li Liang32,Zhang Qianjun1,Zhang Congzheng3,Hirai Shinji2

Affiliation:

1. School of Mechanical Engineering , Shanghai Dian Ji University , Shanghai , 201306 , China

2. Department of Material Science and Engineering , Muroran Institute of Technology , Muroran 050-8585 , Japan

3. School of Mechatronics Engineering , Nanyang Normal University , Henan , 473061 , China

Abstract

Abstract Stibnite mineral (mainly Sb2S3) has been employed for the synthesis of tetrahedrite Cu12Sb4S13 bulk material by spark plasma sintering. High purity Cu12Sb4S13 can be quickly obtained by two sintering procedures at temperatures from the range of 420 °C to 440 °C for 1 h. Appropriate reduction of Cu content (Cu12+xSb4S13, x ⩽ –0.05) or CuS content (Cu12−ySb4S13−y, y = 0.1 or 0.3) was beneficial to fabricate Cu12Sb4S13. The secondary resintering improved the purity of Cu12Sb4S13 material. The first-order magnetic phase transformation with magnetic hysteresis effect was confirmed by the behavior of susceptibility, heat capacity and resistivity. The magnetization showed a linear increase with increasing field (up to 7 T) and non-saturation behavior was observed. The impurities in stibnite mineral Sb2S3 had a weak influence on the transformation temperature but affected the low-temperature magnetization value (~0.15, close to natural tetrahedrite). Similar transformation was observed by the analysis of heat capacity. The properties such as electrical resistivity, Seebeck coefficient and thermal conductivity were also measured for Cu11:9Sb4S13 and Cu11:9Sb4S12:9. The maximum figure of merit ZT of Cu11:9Sb4S12:9 was 0.22 at 367 K.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3