The Impact of the Training Set Size on the Classification of Real Estate with an Increased Fiscal Burden

Author:

Gnat Sebastian1

Affiliation:

1. Faculty of Economics and Management , University of Szczecin

Abstract

Abstract The introduction of an ad valorem tax can lead to an increase in the tax burden on real estate. There are concerns that this increase will be large and widespread. Before undertaking any actual actions related to the real estate tax reform, pilot studies and statistical analyses need to be conducted in order to verify the validity of those concerns and other aspects regarding the replacement of a real estate tax, agricultural tax and forest tax with an ad valorem tax. The article presents results of research on the effectiveness of the classification of real estate into a group at risk of an increase of tax burden with the use of the k-nearest neighbors method. The main focus was to determine the size of a real estate set (training data set) on the basis of which classification is conducted, as well as on the efficiency of that classification, depending on the size of such data set.

Publisher

Walter de Gruyter GmbH

Reference21 articles.

1. Bao Y., Ishii N., 2002, Combining Multiple K-Nearest Neighbor Classifiers for Text Classification by Reducts, In: Lange S., Satoh K., Smith C.H. (eds) Discovery Science. DS 2002. Lecture Notes in Computer Science, vol 2534. Springer, Berlin, Heidelberg.10.1007/3-540-36182-0_34

2. Boschetti A., Massaron L., 2017, Python Data Science Essentials in Polish: Python, Podstawy nauki o danych, Helion, Gliwice.

3. Czaja J., 2001, Methods of appraising real property market and cadastral value in Polish: Metody szacowania wartości rynkowej i katastralnej nieruchomości, Komp-system, Kraków.

4. Enström-Öst C., Söderberg B., Wilhelmsson M., 2017, Homeownership rates of financially constrained households, Journal of European Real Estate Research, Vol. 10 Issue: 2, pp.111-123.10.1108/JERER-09-2015-0035

5. Etel L., Dowgier R., 2013, Local taxes and charges – time for a change in Polish: Podatki i opłaty lokalne – czas na zmiany, Białystok: Temida 2.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3