Influence of Pollution on Photosynthesis Pigment Content in Needles of Picea abies and Picea pungens in Conditions of Development of Iron Ore Deposits

Author:

Fedorchak Elvira1

Affiliation:

1. Kryvyi Rih Botanical Garden of the NAS of Ukraine , Marshak Str., 50, 50089 , Kryvyi Rih , Ukraine

Abstract

Abstract We studied photosynthetic pigments in needles of Pісеа аbies and P. pungens in plantings exposed to aerotechnogenic influence of various levels in the big industrial center of steppe zone of Ukraine (Kryvyi Rih). We analyzed the pigment content in needles of the second year of life sampled from 30 to 40-year-old trees of both species in 6 monitoring sites for 5 months. For the needles of P. аbies and P. pungens from all the sites, we noticed the decreasing content of chlorophyll a (to 27.2 and 25.0%, respectively) and chlorophyll b (to 17.9 and 20.0%, respectively) from May till September, in comparison with background territory. At the same time, the content of carotenoids performing the protective function in photosynthetic reactions increased up to 26.1 and 24.0%, respectively. For P. аbies and P. pungens growing in conditions of intensive technogenic pressure, we ascertained that, during investigations, the sum of chlorophylls (a + b) rate decreased to 24.4 and 23.6%, respectively; ratio (a/b) decreased to 11.4 and 12.3%, respectively; ratio (chlorophylls [a + b]/carotenoids) also decreased to 30.1 and 38.0%, respectively, in comparison with plants from the least polluted site. It is shown that the most intensive negative influence on plantings is caused by industrial pollution and exhaust gases: the minimum or, more rarely, the maximum rates of pigment content appeared in needles of the plants exactly from these sites. Our research results demonstrate the feasibility of using the pigment complexes of P. аbies and P. pungens, with the assimilative apparatus sensitive to air pollution damage, as indicators of air environmental conditions.

Publisher

Walter de Gruyter GmbH

Subject

Ecology

Reference37 articles.

1. Afanas’eva, L.V. (2018). Physiological and biochemical adaptation of siberian larch Larix sibirica Ledeb. to the conditions of the urban environment (in Russian). Siberian Journal of Forest Science, 3, 21–29. DOI: 10.15372/SJFS20180303.

2. Bacic, T., Uzarevic, Z., Grgic, L., Rosa, J. & Popoviс Z. (2003). Chlorophylls and carotenoids in needles of damaged fir (Abies alba Mill.) from risnjak national park in Croatia. Acta Biol. Cracov., Ser. Bot., 45(2), 87–92.

3. Bessonova, V. & Grytsay Z. (2018). Content of plastid pigments in the needles of Pinus pallasiana D. Don in different forest growth conditions of anti-erosion planting. Ekológia (Bratislava), 37(4), 338–344. DOI: 10.2478/eko-2018-0025.

4. Bessonova, V.P. & Ponomar‘ova O.A. (2017). Morphometric characteristics and the content of plastid pigments of the needles of Picea pungens depending on the distance from the highways (in Russian). Biosystems Diversity, 25(2), 96–101. DOI: 10.15421/01171.

5. Bessonova, V.P., Kapelyush, N.V., Ovcharenko, S.V. & Pismenchuk V.D. (2004). Influence of multicompo-nent emissions of road transport on the content of chlorophyll in leaves of woody plants (in Russian). Bulletin of the Nikita Botanical Garden, 89, 73–75.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3