Numerical Modeling of Heat Transfer and Flow Field in a Novel Calcinator

Author:

Zhou Tie-zhuang12,Yang Bin1,Wang Cheng-qiang3

Affiliation:

1. College of New Energy , China University of Petroleum Huadong (East China) , Qingdao , China

2. National Research Center for Drying Technology and Equipment Engineering Technology , Tianhua Chemical Machinery and Automation Institute Co., Ltd. , Lanzhou , China

3. Sinopec Research Institute of Petroleum Processing , Beijing , China

Abstract

Abstract This study focused on investigating the heat transfer and flow dynamics of a catalyst granule within a pilot calciner, employing both numerical modeling and computational fluid dynamics. The research comprised two primary components: (1) Simulation of the gas flow within the pilot calciner using the Eulerian–Eulerian approach, treating gases and catalyst particles as distinct phases – gas and granular. The model, encapsulating both heat transfer and flow processes, was developed in Fluent software version 16.0. Its accuracy was confirmed against empirical data from a pilot-scale calciner unit. (2) Subsequent to validation, the model was utilized to examine the distribution characteristics within the flow field, including the temperature profiles of gas and particles, the vector velocity field of the gas across different phases, and the overall heat transfer coefficient. This investigation aims to enhance the understanding of the complex heat transfer and flow dynamics in calciners, facilitating the optimization of operational parameters, performance, and structure of pilot-scale equipment. Furthermore, it provides foundational data pertinent to the future exploration of real-world industrial applications.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3