Design of a CPU Heat Sink with Minichannel-Fins & its Thermal Analysis

Author:

Arzutuğ Mehmet Emin1

Affiliation:

1. 1 Atatürk University, Engineering Faculty , Chemical Eng. Department , Office UZ117, TR-25100 Erzurum, TÜRKİYE Ener-KA, Ata Teknokent, TR-25240 Erzurum , Türkiye

Abstract

Abstract In this paper, the design and the thermal analysis of a tribled microprocessor cooler combining the advantages of strong swirl flow and minichannel-fins and CuO nanofluid, have been presented. It is thought that the results will contribute to the understanding of the effects of parameters on the cooling flux of the heat sink and the decline at the microprocessor temperature, as Reynolds number in the minichannels and CuO % volume fraction. The results have exhibited that the total performance of the heat sink cooled with the mixture of water–CuO-EG nanofluids increases with the increase of Re number and the %load of nanoparticles in the coolant. It has been determined that the energy withdrawn from the microprocessor was 241 times higher than the energy generated for maximum CuO load and Re number conditions. Besides, the highest temperature decrease has been measured at the maximum CuO load value and maximum Re number.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry,Biotechnology

Reference42 articles.

1. Agostini, B., Fabbri, M., Park, J.E., Wojtan, L., Thome, J.R. & Michel, B. (2007). State of The Art of High Heat Flux Cooling Technologies. Heat Transf. Eng. 28(4), 258–281. DOI:10.1080/01457630601117799.

2. Arzutug, M.E. & Basci, A.A. (2021). A New Heat Sink Design for Cooling Microprocessors and Investigation of Cooling Performance, Proceedings, Int. Symposium on Applied Science and Enginnering (Proceedings of ISASE 2021), 7–9 April, 2021 (pp. 120-123) Erzurum, Türkiye.

3. Al-Tae’y, K.A., Ali, E.H. & Jebur, M.N. (2017). Experimental Investigation of Water Cooled Minichannel Heat Sink for Computer Processing Unit Cooling, Int. J. Eng. Res. Appl. 7-8(1), 38–39. DOI: 10.9790/9622-0708013849.

4. Pal, A., Joshi, Y., Beitelmal, M.H., Patel, C.D. & Wenger, T. (2002). Design and Performance Evaluation of a Compact Thermosyphon, IEEE Transactions on Components and Packaking Technologies. 25(4), 601–607. DOI:10.1109/TCAPT.2002.807997.

5. Badruddin, I.A., Al-Rashed, A.A., Salman, A.N.J., Khaleed, H.M.T., Ahmed, N.A., Kamangar, S., Yunus Khan, T.M. (2014). Investigation of Discrete Heating At Upper Section of A Porous Annulus. Aust. J. Basic Appl. Sci. 8(24), 283–289.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A comprehensive review of solar cooking systems;WIREs Energy and Environment;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3