Study of thermal degradation behavior and kinetics of ABS/PC blend

Author:

Bano Saira1,Ramzan Naveed2,Iqbal Tanveer3,Mahmood Hamayoun3,Saeed Farhan4

Affiliation:

1. Department of Chemical & Polymer Engineering , University of Engineering & Technology , Lahore , FSD Campus, 38000 , Pakistan

2. Department of Chemical Engineering , University of Engineering & Technology , Lahore , 54890 , Pakistan

3. Department of Chemical, Polymer & Composite Materials Engineering , University of Engineering & Technology , Lahore , KSK Campus, 54890 , Pakistan

4. Department of Polymer and Process Engineering , University of Engineering & Technology , Lahore , 54890 , Pakistan

Abstract

Abstract This work investigated kinetics and thermal degradation of acrylonitrile butadiene styrene and polycarbonate (ABS/PC) blend using thermogravimetric analysis in the range of 25 to 520°C. For thermal degradation of blend, activation energy (E a ) and pre-exponential factor (A) were calculated under various heating rates as 5, 10, 15 and 20°C/min using iso-conversional model-free methods (Kissinger, Flynn-Wall- Ozawa and Friedman). Mass loss of the blend as a function of temperature was plotted as thermogravimetric curve (TG) while derivative values of mass loss were drawn as derivative thermogravimetric (DTG) curve. Using Kissinger method, E a was 51.4 kJ/mol, while values calculated from FWO and Friedman method were 86–161 and 30–251 kJ/mol respectively. Results showed increasing trend of E a with higher conversion values indicating different degradation mechanisms at the initial and final stages of the experiment. Thermodynamic parameters such as enthalpy change (ΔH), Gibbs free energy (ΔG) and entropy change (ΔS) were also calculated.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3