Sampling bias in presence-only data used for species distribution modelling: theory and methods for detecting sample bias and its effects on models

Author:

Støa Bente1,Halvorsen Rune1,Mazzoni Sabrina1,Gusarov Vladimir I.1

Affiliation:

1. Natural History Museum , University of Oslo , P.O. Box 1172, Blindern, 0318 Oslo , Norway

Abstract

Abstract This paper provides a theoretical understanding of sampling bias in presence-only data in the context of species distribution modelling. This understanding forms the basis for two integrated frameworks, one for detecting sampling bias of different kinds in presence-only data (the bias assessment framework) and one for assessing potential effects of sampling bias on species distribution models (the bias effects framework). We exemplify the use of these frameworks to museum data for nine insect species in Norway, for which the distribution along the two main bioclimatic gradients (related to oceanicity and temperatures) are modelled using the MaxEnt method. Models of different complexity (achieved by use of two different model selection procedures that represent spatial prediction or ecological response modelling purposes, respectively) were generated with different types of background data (uninformed and background-target-group [BTG]). The bias assessment framework made use of comparisons between observed and theoretical frequency-of-presence (FoP) curves, obtained separately for each combination of species and bioclimatic predictor, to identify potential sampling bias. The bias effects framework made use of comparisons between modelled response curves (predicted relative FoP curves) and the corresponding observed FoP curves for each combination of species and predictor. The extent to which the observed FoP curves deviated from the expected, smooth and unimodal theoretical FoP curve, varied considerably among the nine insect species. Among-curve differences were, in most cases, interpreted as indications of sampling bias. Using BTG-type background data in many cases introduced strong sampling bias. The predicted relative FoP curves from MaxEnt were, in general, similar to the corresponding observed FoP curves. This indicates that the main structure of the data-sets were adequately summarised by the MaxEnt models (with the options and settings used), in turn suggesting that shortcomings of input data such as sampling bias or omission of important predictors may overshadow the effect of modelling method on the predictive performance of distribution models. The examples indicate that the two proposed frameworks are useful for identification of sampling bias in presence-only data and for choosing settings for distribution modelling options such as the method for extraction of background data points and determining the appropriate level of model complexity.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3