Recent Social Trends Among Romanian Twitter Users

Author:

Florea Alexandru-Răzvan1

Affiliation:

1. Bucharest University of Economic Studies

Abstract

Abstract Online Social Networks have become a significant part of our quotidian life. In this paper, we aim to provide a proof of concept of how social media data can be effectively extracted, processed and analyzed with powerful open source tools like R. Moreover, we aim to build a reliable methodology for testing and validating social trends by using social media data. We used API routines to establish the connection between R and Twitter, Deep Learning Models to estimate the demographics of the users, Logistic Regression Models to estimate the predispositions of the users, and Propensity Score Matching to build comparable data sets. After analyzing the Romanian Twitter users, the results of our inquiry show that most of them are relatively young and the percentage of males is significantly higher than the percentage of females. Moreover, our results confirm that facial appearances play an essential role in the popularity of an individual.

Publisher

Walter de Gruyter GmbH

Reference20 articles.

1. Börner, K., T., M. J., & L., G. R. (2004). The simultaneous evolution of author and paper networks. Proceedings of the National Academy of Sciences.10.1073/pnas.0307625100

2. Crane, R., & D., S. (2008). Robust dynamic classes revealed by measuring the response function of a social system. Proceedings of the National Academy of Sciences.10.1073/pnas.0803685105

3. Culotta, A., Ravi, N. K., & Cutler, J. (2015). Predicting the Demographics of Twitter Users from Website Traffic Data. Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. Austin, Texas, USA.

4. Dunbar, R. I. (1992). Neocortex size as a constraint on group size in primates. Journal of Human Evolution, 22(6).10.1016/0047-2484(92)90081-J

5. Florea, A. R., & Roman, M. (2018). Using Twitter data for the research of Romanian migration flows. THE INTERNATIONAL ECONFERENCE “ENTERPRISES IN THE GLOBAL ECONOMY”.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3