Affiliation:
1. Yozgat Bozok University, Medicine Faculty, Histology-Embryology Department , Yozgat , Turkey
2. Erciyes University, Medicine Faculty, Histology-Embryology Department , Kayseri , Turkey
3. Erciyes University, Agriculture Faculty, Agriculture Biotechnology Department , Kayseri , Turkey
Abstract
Abstract
Sepsis is a systemic infectious disease that leads to shock, organ failure, and death and requires urgent treatment. Animal model studies of sepsis and endotoxemia have revealed that antioxidant compounds prevent the progression of multi-system organ failure and reduce death rate. In the present study aimed to establish the effect of propolis, which has been proven to have antibacterial, anti-inflammatory and antioxidant activities in recent years, on lipopolysaccharide (LPS)-induced renal damage. 40 Sprague dawley rats were randomly divided into five equal groups (n = 8): Control (0.9% NaCl), LPS (30 mg/kg), propolis (250 mg/kg), propolis + LPS, and LPS + propolis. After completion of the experimental protocol, Malondialdehyde (MDA) levels were measured using blood serum samples obtained from the rats. The kidney samples of the rats were examined histopathologically. As a result, it was determined that LPS increased MDA levels in the blood serum samples and it caused histological changes in the kidney tissue such as tubular damage, mild ischemic injury, ischemic damage in the form of vacuolization, tubular epithelial vacuolization, vascular congestion, and glomerular atrophy. Contrary to these results, MDA levels of serum decreased in the propolis + LPS, and LPS + propolis groups, and also histological findings improved. These results showed that protective effect of propolis against kidney damage caused by LPS.
Subject
Genetics,Molecular Biology,Biomedical Engineering,Molecular Medicine,Food Science,Biotechnology
Reference33 articles.
1. Rietschel ET, Brade H, Holst O, Brade L, Müller-Loennies S, Mamat U, Zahringer U, Schumann RR. Bacterial endotoxin: chemical constitution, biological recognition, host response, and immunological detoxification. In: Rietschel ET, Wagner H, ed. Pathology of Septic Shock. Current Topics in Microbiology and Immunology, vol 216.Springer, Berlin, Heidelberg; 1996: 39-81.
2. Iskit AB. Sepsiste Deneysel Modeller. Hacettepe University Faculty of Medicine, Department of Medical Pharmacology. Turkish Journal of Intensive Care 2005; 5(2): 133-136.
3. Otero-Anton E, Gonzalez-Quintela A, Lopez-Soto A, Lopez-Soto A, Lopez-Ben S, Llovo J and Perez LF. Cecal ligation and puncture as a model of sepsis in the rat: influence of the puncture size on mortality, bacteremia, endotoxemia and tumor necrosis factor alpha levels. European Surgical Research 2001; 33(2): 77-79.
4. Bone RC. Gram-negative sepsis. Background, clinical features, and intervention. Chest 1991;100(3): 802-8
5. Powell RJ, Machiedo GW, Rush BF, Jr & Dikdan GS. Effect of oxygen-free radical scavengers on survival in sepsis. American Surgery 1991; 57: 86-88.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献