Large scale propagation and in vitro weaning for the restoration of Viola palustris to support assisted colonisation of a threatened butterfly

Author:

Kendon Jonathan P.1,Novotna Alzbeta1,Ramsay Margaret M.1,Porter Anne2,Sarasan Viswambharan1

Affiliation:

1. Royal Botanic Gardens, Kew, Richmond , Surrey , TW9 3DS , United Kingdom

2. Durham Wildlife Trust, Low Barns Nature Reserve, Witton-le-wear, Bishop Auckland , County Durham , DL14 0AG , United Kingdom

Abstract

Abstract The distribution and abundance of Boloria selene (small pearl-bordered fritillary butterfly, SPBF) declined over recent decades in many parts of the UK. Availability of food plants, especially marsh violet (Viola palustris), for the caterpillars of the SPBF has been identified as one of the major causes of this decline. To achieve augmentation of existing colonies and develop new populations of SPBF large numbers of marsh violet propagules were required specifically to feed the larvae. The main objectives of the study were to produce thousands of good quality marsh violet propagules to restore selected habitats in the Heart of Durham, Northern England, using in vitro methods. Preliminary trials showed that in vitro multiplication of seedlings from wild collected seeds through conventional agar-based cultures was lengthy, expensive and turned out to be a non-viable route to achieve the objectives. This study explored the potential of bioreactor-based cloning and cost-effective one step rooting and weaning. Robust propagules, ready for transplantation following rapid propagation and one step rooting and weaning in vitro, were raised in a plug system for transplantation and establishment under field conditions. This was achieved by using simple and cost-effective methods to support the large-scale restoration exercise using 14,000 propagules. Application of high throughput micropropagation and low cost one step weaning systems for time-bound conservation and restoration projects are discussed in detail. This research highlights the important role of in vitro methods to support integrated biodiversity conservation of a native larval host plant and threatened butterfly.

Publisher

Walter de Gruyter GmbH

Subject

Genetics,Molecular Biology,Biomedical Engineering,Molecular Medicine,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3