A strategy for covalent anchoring of self-assembling β3 oligoamide nanorods to gold surfaces

Author:

Hussein Khadeeja A.1,Kulkarni Ketav2,Barlow Anders1,Perlmutter Patrick1,Mechler Adam1

Affiliation:

1. Department of Chemistry and Physics , La Trobe Institute for Molecular Science, La Trobe University , Bundoora, Victoria 3086 , Australia

2. Biomedicine Discovery Institute , Monash University , Clayton, VIC 3800 , Australia

Abstract

Abstract Oligopeptides stand out for their remarkable structural variability, ease of synthesis, and amenability to functionalization, making them exceedingly appealing for crafting functional nanostructured materials. The low metabolic stability of natural peptides can be overcome by replacing α-amino acids with β3- amino acids, to yield artificial peptides best described as substituted β3-oligoamides. Controlling the morphology of such structures by varying the amino acid residues and altering the oligoamide termini makes it possible to adapt the core design to a range of hierarchical structures and function. Conductivity is a desired property in such nanomaterials; preferably conductive materials should be chemically anchored to a highly conductive metal, such as gold surface to connect to macroscopic electronics. It is preferable to use thiol functionality, however β3 cysteine is not synthetically achieveable. In this study β3 [SLIA] oligoamide has been synthesized and functionalized at the N terminus with a thiol moiety. After successful synthesis and purification, the thiolated oligoamide was physically characterized to confirm binding to gold, self-assembly and hetero assembly on these anchor points. It was demonstrated with a quartz crystal microbalance (QCM) that self-assembling monolayers can be formed on a gold surface and the formation of a S-Au bond was confirmed with X-ray photoelectron spectroscopy. Growth of Ac-β3[WKLWEL] fibres on these anchor points was confirmed by using atomic force microscopy and QCM. Hence, a viable metal anchor has been established that lays the foundations for the future development of molecular electronics based on β3 oligoamides.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3