Machine Learning Approaches for Obsessive Compulsive Disorder Detection

Author:

Patel Kabita1,Tripathy Ajaya K.2

Affiliation:

1. 1 Dept. of Computer Sci. , Gangadhar Meher University , India

2. 2 Dept. of Computer Sci ., Gangadhar Meher University , India

Abstract

Abstract Obsessive-Compulsive Disorder (OCD) is a psychiatric illness that produces significant psychological distress in patients. Individuals with OCD have recurring unwanted thoughts or sensations which make them obsessed with something and feel to do something repetitively as a compulsion. In general detection of OCD is performed by symptoms analysis. However, the symptoms are significantly visible at a later stage. Even individuals with OCD have less faith in the analysis of the symptoms as long as it is not affecting their life negatively. As a result, they start their treatment at a later stage and the treatment process becomes longer. However, it is observed that if the detection is performed through laboratory analysis through some biomarkers then the patients have more faith in the detection process and can start their treatment well in advance. Therefore laboratory detection of OCD can play a vital role in OCD treatment effectiveness. Most of the laboratory detection process proposed in the literature uses Machine Learning on related biomarkers. However, the prediction accuracy rate is not enough. This research aims to analyze the approaches to pediatric OCD based on machine learning using neuroimaging biomarkers and oxidative stress biomarkers. The challenges in OCD detection and prediction using neuroimaging biomarkers, oxidative stress biomarkers, and Machine Learning models have been described. Further, it analyzes the performance of different machine learning models that were used for OCD detection and highlights the research gap to improve prediction accuracy.

Publisher

Walter de Gruyter GmbH

Subject

Genetics,Molecular Biology,Biomedical Engineering,Molecular Medicine,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3