Point-of-Care Diagnostics: Molecularly Imprinted Polymers and Nanomaterials for Enhanced Biosensor Selectivity and Transduction

Author:

Denmark Daniel J.1234,Mohapatra Subhra135,Mohapatra Shyam S.1234

Affiliation:

1. James A Haley VA Hospital , Tampa , FL United States of America

2. Taneja College of Pharmacy, University of South Florida , Tampa , FL United States of America

3. Center for Research and Education in Nanobioengineering, Departments of University of South Florida , Tampa , FL United States of America

4. Internal Medicine and University of South Florida , Tampa , FL United States of America

5. Molecular Medicine, Morsani College of Medicine, University of South Florida , Tampa , FL United States of America

Abstract

Abstract Significant healthcare disparities resulting from personal wealth, circumstances of birth, education level, and more are internationally prevalent. As such, advances in biomedical science overwhelmingly benefit a minority of the global population. Point-of-Care Testing (POCT) can contribute to societal equilibrium by making medical diagnostics affordable, convenient, and fast. Unfortunately, conventional POCT appears stagnant in terms of achieving significant advances. This is attributed to the high cost and instability associated with conventional biorecognition: primarily antibodies, but nucleic acids, cells, enzymes, and aptamers have also been used. Instead, state-of-the-art biosensor researchers are increasingly leveraging molecularly imprinted polymers (MIPs) for their high selectivity, excellent stability, and amenability to a variety of physical and chemical manipulations. Besides the elimination of conventional bioreceptors, the incorporation of nanomaterials has further improved the sensitivity of biosensors. Herein, modern nanobiosensors employing MIPs for selectivity and nanomaterials for improved transduction are systematically reviewed. First, a brief synopsis of fabrication and wide-spread challenges with selectivity demonstration are presented. Afterward, the discussion turns to an analysis of relevant case studies published in the last five years. The analysis is given through two lenses: MIP-based biosensors employing specific nanomaterials and those adopting particular transduction strategies. Finally, conclusions are presented along with a look to the future through recommendations for advancing the field. It is hoped that this work will accelerate successful efforts in the field, orient new researchers, and contribute to equitable health care for all.

Publisher

Walter de Gruyter GmbH

Subject

Genetics,Molecular Biology,Biomedical Engineering,Molecular Medicine,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3