Thermal-magnetic performance analysis for smart fluid dampers

Author:

Caracciolo Antonino1,Ollio Samuele1,Pizzi Alessio1,Romeo Leonardo1,Serranò Antonio Enrico1,Tringali Giuseppe Vasily1,Greco Antonino1,Versaci Mario2

Affiliation:

1. Istituto di Istruzione Superiore “Euclide”, Contrada Monoscalco , Bova Marina , Italy

2. DICEAM Department , “Mediterranea” University, Via Graziella Feo di Vito , Reggio Calabria , Italy

Abstract

Abstract Over the years, the Italian Government has taken significant strides in promoting road safety awareness among the students in high schools to create an awareness of prevention and a consciousness of road safety in the student population. In this context, an agreement was signed between the DICEAM Department of the “Mediterranea” University of Reggio Calabria (Italy) and the “Euclide” Higher Education Institute Bova Marina (Italy) to combine road safety with research science in the Science, Technology, Engineering, and Mathematics (STEM) area. With the primary aim of “knowing in order to act”, the students focused on the multi-physics design of magnetorheological fluid dampers as high-performance devices (simple to design and requiring reduced maintenance) for vehicle suspensions, especially class B vehicles. By combining road safety considerations with multi-physics scientific disciplines, the project seeks to emphasize the importance of prevention and knowledge-based action. The study explores the use of magnetorheological fluid dampers, powered by electric current and magnetic induction distribution with thermal loads, to provide appropriate yield stress for developing damping action with repercussions on the quality of road safety. The paper delves into the basic principles of FEM (Finite Element Method) techniques for analyzing an MR damper from both magnetostatic (the main cause generating the damping effect) and thermal perspectives (thermal effects are strongly influenced by environmental conditions). The analysis of an asymmetrical device, where the damping action relies on an MR fluid strip, reveals the significant influence of magnetic and thermal stresses on the magnetization of individual particles and the overall viscosity of the MR fluid.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3