Channel tracking in IRS-based UAV communication systems using federated learning

Author:

Sharma Itika1,Gupta Sachin Kumar2

Affiliation:

1. 1 School of Electronics and Communication Engineering , Shri Mata Vaishno Devi University , Kakryal-182320, Katra, (Jammu and Kashmir), UT , India

2. 2 Department of Electronics and Communication Engineering , Central University of Jammu , Samba-181143, Jammu, (UT of J&K) , India

Abstract

Abstract This paper aims to overcome the problems and limitations of the communications of Unmanned Aerial Vehicles (UAV) by incorporating Intelligent Reflecting Surface (IRS) into UAV for channel tracking. Since IRS may change the propagation environment, is a desirable option for combining with UAV to improve wireless network security. Due to its capacity to proactively configure the wireless environment, IRS technology is a potential one for future communication systems. IRS is able to provide steady communications and serve a greater coverage area by reflecting signals to create virtual LoS routes. Moreover, we develop a federated learning-based channel tracking technique in which federated learning is used to determine the security and pre-estimation constituent. In addition, for channel tracking, Long Short-Term Memory (LSTM) is developed. Due to their ability to understand long-term connections between data time steps, LSTMs are frequently used to learn, analyze, and classify sequential data.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3