Throughput performance optimization of NOMA-assisted cooperative relay system with realistic impairments

Author:

Bachan P.1,Shukla Aasheesh1,Bansal Atul1

Affiliation:

1. Department of Electronics and Communication Engineering , GLA University , Mathura, Uttar Pradesh , India

Abstract

Abstract This work aims to investigate the outage and throughput performance of non-orthogonal multiple access assisted cooperative relay system (CRS-NOMA) considering the realistic impairments caused due to in-phase and quadrature-phase imbalance (IQI), channel estimation errors (CEE), and successive interference cancellation (SIC) errors. More specifically, we investigate a model in which two-phase downlink transmission is carried out in two different modes: (i) CRS-NOMA without direct links and (ii) CRS-NOMA with direct links (CRS-DLNOMA). In CRS-NOMA mode, the source broadcasts a composite NOMA signal to destination users with the assistance of a decode-and-forward (DF) relay. In contrast, in CRS-DLNOMA, direct and cooperative links are available for transmission. We derive the analytical expressions of outage probability and throughput for both the NOMA destinations to evaluate the system performance of both CRS-NOMA and CRS-DLNOMA modes of transmission. Furthermore, numerical simulations also study and validate the influence of IQI, CEE, and SIC errors on the outage and throughput performance. The simulation results verify that realistic impairments degrade the system performance, but the presence of direct link has a positive impact on outage and throughput. Additionally, we use the golden search method to optimize the power allocation factor (PAF) and transmission rate to maximize the throughput at the near user while ensuring the throughput constraint at the far user.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3