Temporal RNA Integrity Analysis of Archived Spaceflight Biological Samples

Author:

Talburt Elizabeth Delgadillo1,French Alison J.2,Lopez Danielle K.2,Polo San-Huei Lai2,Boyko Valery2,Dinh Marie T.2,Rask Jon C.2,Stewart Helen J.3,Chakravarty Kaushik4

Affiliation:

1. Volunteer Internship Program, National Aeronautics and Space Administration (NASA) Ames Research Center , Moffett Field , California ;

2. Wyle Labs, Inc. , Moffett Field , California ;

3. National Aeronautics and Space Administration (NASA) Ames Research Center , Moffett Field , California ;

4. Logyx LLC , Mountain View , California

Abstract

Abstract In spaceflight experiments, model organisms are used to assess the effects of microgravity on specific biological systems. In many cases, only one biological system is of interest to the Principal Investigator. To maximize the scientific return of experiments, the remaining spaceflight tissue is categorized, documented, and stored in the biobank at NASA Ames Research Center, which is maintained by the Ames Life Science Data Archive (ALSDA). The purpose of this study is to evaluate the state of a sample set of tissues from the ALSDA biobank. Garnering information – such as downstream functional analysis for the generation of omics datasets – from tissues is, in part, dependent on the state of sample preservation. RNA integrity number (RIN) values have been calculated for rodent liver tissues that were part of scientific payloads returned from the International Space Station (ISS). Rat livers from Spacelab Life Sciences 1 (SLS-1) and mouse livers from Commercial Biomedical Test Module 3 (CBTM-3), Rodent Research 1 (RR1), and Rodent Research 3 (RR3) were tested. It was found that mean RIN values from CBTM-3, RR1, and RR3 were suitable for downstream functional analysis (RIN > 5) while the mean RIN value for SLS-1 was not (RIN = 2.5 ± 0.1). Information from this study lays the foundation for future efforts in determining the types of assays that are most appropriate for different tissues in the ALSDA biobank and similar preservation facilities, which would aid in shaping the design of experiments.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3