Assessment of Membrane-Aerated Biological Reactors (MABRs) for Integration into Space-Based Water Recycling System Architectures

Author:

Christenson Dylan1,Sevanthi Ritesh1,Morse Audra1,Jackson Andrew1

Affiliation:

1. Department of Civil, Environmental and Construction Engineering , Texas Tech University , Lubbock , Texas

Abstract

Abstract This work investigates the suitability of membrane aerated biological reactors (MABRs) for biological treatment of a space-based waste stream consisting of urine, hygiene/grey water, and humidity condensate within an overall water recycling system. Water represents a critical limiting factor for human habitation and travel within space; thus, water recycling systems are essential. Biological treatment of wastewater provides a more efficient sustainable means of stabilizing the waste stream within water recycling system architectures in comparison to current chemical stabilization processes that utilize harsh chemicals, which represent both a hazardous and an unsustainable approach. To assess the capabilities of MABRs for providing microgravity compatible biological treatment and verify long duration operation and integration with desalination processes, two full-scale MABR systems were challenged with various loading rates and operational scenarios during sustained operation for over 1 year. The MABRs were able to maintain 196 g-C/m3-d and 194 g-N/m3-d volumetric conversion rates. Additionally the systems were able to handle intermittent loading and recover rapidly from system hibernation periods of up to 27 days. Overall, the use of MABRs within a wastewater treatment system architecture provides several potential benefits including minimizing the use of toxic chemical pretreatment solutions and providing an effluent solution that is easier to desalinate and dewater.

Publisher

Walter de Gruyter GmbH

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3