Computer Tomography (CT) Scans as a Diagnostic Tool for Interpretation of S10 Plastinated Slides from Dog Cadaver
Author:
Pendovski Lazo1, Bozhinovski Dimitar1, Ilievska Ksenija2, Trojachanec Plamen2, Ilieski Vlatko1
Affiliation:
1. Department of Functional Morphology, Faculty of Veterinary Medicine-Skopje , Ss. Cyril and Methodius University , Lazar Pop-Trajkov 5-7, 1000 Skopje, North Macedonia 2. Department of Veterinary Surgery, Faculty of Veterinary Medicine-Skopje , Ss. Cyril and Methodius University , Lazar Pop-Trajkov 5-7, 1000 Skopje, North Macedonia
Abstract
Abstract
Computed tomography (CT) is a routine method for the diagnosis of pathological structures in the body and has been widely used in veterinary medicine as an advanced diagnostic imagining tool in veterinary clinics. However, interpretation of CT scans requires detailed knowledge of topographical animal anatomy and usually has limited scan resolution due to the ambiguous relationship between signal intensity and tissue composition. The aim of the study was to assess the morphometric similarities between S10 plastinated slides and computer tomography (CT) scans and their usability as compatible paired diagnostic methods. A 3-year-old euthanized dog cadaver was scanned on SHIMADZU SCT/6800TXL scanner immediately post-mortem, then frozen at -80 °C to preserve the correct anatomical position, and plastinated with a standardized procedure. Semi-transparent transversal slices (5 mm) were obtained from the head, thoracic, and lumbar sections of the body. The S10 plastinated slides and CT scans contained fine and small anatomical structures with high similarity. The spatial relationships of all anatomical structures on the serial S10 platinates were in the correct anatomical position. In conclusion, S10 transversal slices showed high similarity with the CT scans and allowed identification of the corresponding morphological structures. The S10 thin plastinated transversal slices could be used for additional interpretation of CT transversal scans at veterinary clinics and as a didactical tool for veterinary students.
Publisher
Walter de Gruyter GmbH
Subject
General Veterinary
Reference18 articles.
1. 1. Brenner, D.J., Hall, E.J. (2007). Computed tomography - an increasing source of radiation exposure. NEJM 357(22): 2277-2284. https://doi.org/10.1056/NEJMra072149 PMid:1804603110.1056/NEJMra07214918046031 2. 2. Randall, E.K. (2016). PET-computed tomography in veterinary medicine. Vet Clin North Am Small Anim. 46(3): 515-533. https://doi.org/10.1016/j.cvsm.2015.12.008 PMid:2706844510.1016/j.cvsm.2015.12.00827068445 3. 3. Samii, V.F., Biller, D.S., Koblik, P.D. (1998). Normal cross-sectional anatomy of the feline thorax ana abdomen: comparasion of computed tomography and cadaver anatomy. Vet Radiol Ultrasound. 39(6): 504-511. https://doi.org/10.1111/j.1740-8261.1998.tb01640.x PMid:984518610.1111/j.1740-8261.1998.tb01640.x9845186 4. 4. Pendovski, L., Ilieski, V., Ursic, M., Petkov, V., Popovska-Percinic, F., Travnikar, B., Fazarinc, G. (2011). Anatomical correlation between dog transversal S10 plastinated thin sections and computer tomography (CT) images. Proceedings of the Days of Veterinary Medicine (pp. 124-125), Ohrid, R. Macedonia 5. 5. Bozinovski, D., Popovska-Percinic, F., Petkov, V., Adamov, N., Nikolovski, M., Ilieski, V., Pendovski, L. (2018). Tools for interpretation of computer tomography (CT) split images at dog: study with S10 thin plastinated specimens (p. 200), Ohrid, R. Macedonia
|
|