Residual Dose of K-Feldspar post-IR Irsl of Beach-Shoreface Sands at Kujukuri, Eastern Japan

Author:

Tamura Toru12,Komatsubara Junko1,Sugisaki Saiko1,Nishida Naohisa3

Affiliation:

1. Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology , Tsukuba , Ibaraki , Japan

2. Graduate School of Frontier Sciences , The University of Tokyo , 5 Chome-1-5 Kashiwanoha , Kashiwa , Chiba , Japan

3. Department of Environmental Sciences , Tokyo Gakugei University , Koganei , Tokyo , Japan

Abstract

Abstract We assessed the residual dose of K-feldspar grains from modern and Holocene beach–shoreface sands at Kujukuri, eastern Japan. Samples from the modern foreshore and shoreface (to 34 m depth) show residual doses <0.2 Gy for infrared-stimulated luminescence (IR)50 measured during post-IR infrared-stimulated luminescence (pIRIR)50/150, equivalent to potential burial age overestimation of only several decades for given dose rates. Residual doses of 1–3 Gy are retained by pIRIR50/150, equivalent to 400–1,300 years; pIRIR50/290 residual doses are up to 30 Gy, suggesting possible overestimation by >10,000 years. Residual doses of Holocene sands were also assessed by comparison with radiocarbon ages, revealing consistent results with modern sands. The pIRIR50/290 results show no pronounced correlation of residual dose with water depth, except for a few samples from <5 m depth with residual doses several tens of per cent lower than those of deeper sands, suggesting that most samples were not fully bleached and that sustained subaerial sunlight bleaching diminishes the difficult-to-bleach component. Compared to the uncertainties associated with other factors, such as the fading correction, the residual doses of IR50 and pIRIR50/150 are negligible for samples older than late and early Holocene, respectively. In contrast, the residual dose of pIRIR50/290 may lead to critical age overestimation of Late Pleistocene deposits if the residual dose is not properly corrected.

Publisher

Walter de Gruyter GmbH

Subject

Earth and Planetary Sciences (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3