Author:
Hassett Brendan,Tschinkel Yuri
Abstract
AbstractWe classify quartic del Pezzo surface fibrations over the projective line via numerical invariants, giving explicit examples for small values of the invariants. For generic such fibrations, we describe explicitly the geometry of spaces of sections to the fibration, and mappings to the intermediate Jacobian of the total space. We exhibit examples where these are birational, which has applications to arithmetic questions, especially over finite fields.
Reference35 articles.
1. Baker H.F., On the invariants of a binary quintic and the reality of its roots, Proc. London Math. Soc., 1908, s2–6(1), 122–140
2. Beauville A., Variétés de Prym et jacobiennes intermédiaires, Ann. Sci. École Norm. Sup., 1977, 10(3), 309–391
3. Brumer A., Remarques sur les couples de formes quadratiques, C. R. Acad. Sci. Paris Sér. A-B, 1978, 286(16), A679–A681
4. Castravet A.-M., Rational families of vector bundles on curves, Internat. J. Math., 2004, 15(1), 13–45
5. Cheltsov I., Nonrational nodal quartic threefolds, Pacific J. Math., 2006, 226(1), 65–81
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Classifying sections of del Pezzo fibrations, I;Journal of the European Mathematical Society;2023-06-12
2. On stable rationality of Fano threefolds and del Pezzo fibrations;Journal für die reine und angewandte Mathematik (Crelles Journal);2019-06-01
3. Embedding pointed curves in K3 surfaces;Mathematische Zeitschrift;2014-07-22